
Suggested line of text (optional): 

WE START WITH YES.

Figure courtesy of Mihailo Isakov (TAMU)

March 2, 2021

Darshan: Enabling 
Application I/O 
Understanding in an 
Evolving HPC Landscape

erhtjhtyhy

Shane Snyder 
ssnyder@mcs.anl.gov
Argonne National Laboratory

NERSC Data Seminar



❖ The ability to characterize and understand application 
I/O workloads is critical to ensuring efficient use of an 
evolving and increasingly complex HPC I/O stack 
➢ Deep layers of coordinating I/O libraries and entirely 

new-to-HPC storage paradigms (e.g., object storage)
➢ Emerging storage hardware (e.g., PMEM) and storage 

architectures (e.g., burst buffers)

❖ I/O analysis tools are invaluable in helping to navigate 
this complexity and to better understand I/O
➢ Characterize I/O behavior of individual jobs to inform 

tuning decisions
➢ Characterize job populations to better understand 

system-wide I/O stack usage and optimize deployments

Understanding and improving HPC I/O

2



Darshan: An application I/O characterization tool 
for HPC



❖ Darshan is a lightweight I/O characterization tool that captures concise views 
of HPC application I/O behavior
➢ Produces a summary of I/O activity for each instrumented job

■ Counters, histograms, timers, & statistics
■ Full I/O traces (if requested)

❖ Widely available
➢ Deployed (and commonly enabled by default!) at many HPC facilities around the world

❖ Easy to use
➢ No code changes required to integrate Darshan instrumentation
➢ Negligible performance impact; just “leave it on”

❖ Modular
➢ Adding instrumentation for new I/O interfaces or storage components is straightforward

What is Darshan?

4



How does Darshan work?

❖ Darshan can insert application I/O instrumentation at link-time (for static and dynamic 
executables) or at runtime using LD_PRELOAD (for dynamic executables)
➢ Starting in version 3.2.0, Darshan supports instrumentation of any dynamically-linked executable (MPI or not) 

using the LD_PRELOAD method

5

❖ Darshan records file access statistics for each 
process as app executes

❖ At app shutdown, collect, aggregate, 
compress, and write log data

❖ After job completes, analyze Darshan log data 
➢ darshan-job-summary - provides a summary PDF 

characterizing application I/O behavior
➢ darshan-parser - provides complete text-format 

dump of all counters in a log file
➢ pydarshan - Python analysis module for Darshan logs 



Using Darshan on Cori



Using Darshan on Cori
MPI applications

7

Use ‘module list’ to confirm 
Darshan is actually loaded

❖ Darshan is already installed and on by default on NERSC’s Cori system
➢ Instrumentation enabled using Cray software module that injects Darshan linker options when 

compiling MPI applications using Cray compiler wrappers (cc, CC, etc.)

Darshan 3.2.1 current default 
version available on Cori

If Darshan not loaded,
you can always load manually 

using ‘module load’



Using Darshan on Cori
HDF5 applications

8

❖ Note that in addition to the default darshan/3.2.1 module, there is a special 
darshan/3.2.1-hdf5 that enables instrumentation of HDF5 APIs*
➢ Offered as a separate module to prevent non-HDF5 applications from inheriting Darshan’s 

HDF5 library dependency

Use ‘module switch’ to switch to the non-default 
Darshan module built with HDF5 support 

*Note: this module is only 
compatible with cray-hdf5 

versions 1.10+ 



Using Darshan on Cori

9

❖ OK, Darshan is loaded...now what?
➢ Just compile and run your application!
➢ Darshan inserts instrumentation directly into executable

❖ LD_PRELOAD is another option for dynamically-linked executables:
➢ This method is necessary for Python environments (i.e., mpi4py, h5py)
➢ Also helpful for applications that cannot be recompiled

Manually set 
LD_PRELOAD to point 

to Darshan’s shared 
library before running 

your application



Using Darshan on Cori
non-MPI applications

10

❖ Starting in version 3.2.0, Darshan supports 
instrumentation of non-MPI applications using 
LD_PRELOAD (i.e., dynamically-linked binaries)
➢ Users must additionally export 

‘DARSHAN_ENABLE_NONMPI=1’ to enable Darshan in this 
case

❖ Note: there is a bug in the Darshan 3.2.1 
module on Cori that prevents non-MPI mode 
from working properly
➢ Users can install an explicit non-MPI version of Darshan 

themselves to workaround for now (e.g., ‘spack 
install darshan-runtime~mpi+slurm’)

Darshan
instrumentation



Using Darshan on Cori

❖ After the application terminates, look for 
your log files:

11

Darshan logs stored in a central 
directory for all Cori users, use 

‘darshan-config --log-path’ to find

Logs further 
indexed using 

‘year/month/day’ 
the job executed. 

Log file name starts with the following pattern: 
‘username_exename_jobid…’

❖ Note: Spack-installed Darshan versions simply put log files directly in your 
home directory by default -- override by setting DARSHAN_LOG_DIR_PATH 
environment variable



Analyzing Darshan logs



Analyzing Darshan logs

13

❖ After generating and locating your log, use Darshan analysis tools to inspect 
log file data: Copy the log file 

somewhere else for 
analysis

Invoke darshan-parser 
(already in PATH on Cori) 
to get detailed counters

Modules use a common format 
for printing counters, indicating 

the module, rank, record ID, 
counter name, counter value, 
filename, etc. -- here sample 
counters are shown for both 
POSIX and MPI-IO modules



Analyzing Darshan logs

14

❖ But, darshan-parser output isn’t so accessible for most users… use 
darshan-job-summary tool to produce summary PDF of app I/O behavior
➢ Due to LaTeX and Perl dependencies, it may be easier just to copy Darshan logs to a personal 

workstation for analysis
Invoke darshan-job-summary on 

log file to produce PDF

Output PDF file name based on 
Darshan log file name



Analyzing Darshan logs

15

Result is a multi-page 
PDF containing graphs, 
tables, and performance 
estimates characterizing 
the I/O workload of the 

application

We will summarize some 
of the highlights in the 

following slides



Analyzing Darshan logs

16

PDF header contains some high-level 
information on the job execution

I/O performance estimates (and total I/O 
volumes) provided for MPI-IO/POSIX and 

STDIO interfaces



Analyzing Darshan logs

17

Across main I/O interfaces, how much time was 
spent reading, writing, doing metadata, or 

computing?

If mostly compute, limited opportunities for I/O tuning

What were the relative totals of different I/O 
operations across key interfaces?

Lots of metadata operations (open, stat, seek, etc.) 
could be a sign of poorly performing I/O



Analyzing Darshan logs

18

Histograms of POSIX and MPI-IO access 
sizes are provided to better understand 

general access patterns

In general, larger access sizes perform 
better with most storage systems

Table indicating total number of files 
of different types (opened, created, 

read-only, etc.) recorded by Darshan



Analyzing Darshan logs

19

Darshan can also provide basic timing bounds for read/write activity, 
both for independent file access patterns (illustrated) or for shared 

file access patterns

reads

writes



Obtaining finer-grained details with Darshan



Focusing analysis on individual files

21

❖ If we want to focus Darshan analysis tools on a specific file, Darshan offers a 
couple of different options
➢ darshan-convert utility can be used to create a new Darshan log file containing a specified 

file record ID (obtainable from darshan-parser output)
■ e.g., ‘darshan-convert --file RECORD_ID input_log.darshan output_log.darshan’
■ New log file can be ran through existing log utilities we have already covered

➢ darshan-summary-per-file tool can be used to generate separate job summary PDFs for 
every file in a given Darshan log

■ Do not use if your application opens a lot of files!



Disabling reductions of shared records

22

You may notice that Darshan is 
unable to provide more detailed 

access information for shared file 
workloads, as illustrated here

For shared files, information from 
each rank is combined into a single 

record to save space



Disabling reductions of shared records

23

Setting the 
‘DARSHAN_DISABLE_SHARED_REDUCTION’ 

environment variable will force Darshan 
to skip the shared file reduction step, 
retaining each process’s independent 

view of access information 

This results in larger log files, but may 
be useful in better understanding 

underlying access patterns in collective 
workloads



Obtaining fine-grained traces with DXT

❖ Darshan’s DXT module can be enabled at runtime for users wishing to 
capture detailed I/O traces for MPI-IO and POSIX interfaces
➢ Fine-grained trace data comes at cost of larger per-process memory overheads
➢ Set the DXT_ENABLE_IO_TRACE environment variable to enable

❖ darshan-dxt-parser can be then be used to dump text-format trace data:

24



Obtaining fine-grained traces with DXT

❖ dxt_analyzer Python script installed with darshan-util can be used to help 
visualize read/write trace activity:

25

Provides details on each 
I/O operation issued by 
each rank, providing a 

complete picture of which 
ranks are performing I/O 
and how long they are 

spending on I/O



New and upcoming Darshan features:
HDF5 instrumentation



HDF5 instrumentation

❖ HDF5 offers a convenient abstraction for large data collections, but it can be 
difficult to understand how it interacts with lower layers of the I/O stack that 
most impact performance

❖ To help better understand HDF5 usage and performance, we have developed 
Darshan instrumentation modules for HDF5 file (H5F) and dataset (H5D) APIs
➢ What are file and dataset properties?
➢ How are datasets accessed?
➢ How are datasets organized within files?
➢ Do HDF5 accesses decompose efficiently to lower-level (i.e., MPI-IO and POSIX) accesses? If 

not, do any optimizations make sense?

Available in Darshan 3.2.0+

27



HDF5 instrumentation

❖ H5F instrumentation highlights:
➢ Operation counts

■ open/create
■ flush

➢ MPI-IO usage
➢ Metadata timing

Available in Darshan 3.2.0+

28



HDF5 instrumentation

❖ H5D instrumentation highlights:
➢ Operation counts:

■ open/create
■ read/write
■ flush

➢ Total bytes read/written
➢ Access size histograms
➢ Dataspace selection types

■ Regular hyperslab
■ Irregular hyperslab
■ Points

➢ Dataspace total dimensions, points
➢ Chunking parameters
➢ MPI-IO collective usage
➢ Deprecated function usage
➢ Read, write, and metadata timing

Available in Darshan 3.2.0+

29



HDF5 instrumentation

❖ Using the MACSio¹ HDF5 plugin, run a couple of simple examples 
demonstrating the types of insights HDF5 I/O instrumentation can enable
➢ 60-process (5-node) single shared file, 3d mesh, write roughly 1 GiB of cumulative H5D data
➢ Compare performance of collective and independent I/O configurations

Available in Darshan 3.2.0+

30 1.  https://github.com/LLNL/MACSio

b/w: ~30 MB/sec

POSIX I/O dominates, H5 
incurs non-negligible 
overhead forming this 

workload

Negligible time spent in 
MPI-IO

b/w: ~290 MB/sec

H5 and POSIX incur 
minimal overhead for 

this workload

MPI-IO collective I/O 
algorithm dominates

Average per-process time spent in I/O



31

HDF5 instrumentation
Available in Darshan 3.2.0+

❖ Using the MACSio¹ HDF5 plugin, run a couple of simple examples 
demonstrating the types of insights HDF5 I/O instrumentation can enable
➢ 60-process (5-node) single shared file, 3d mesh, write roughly 1 GiB of cumulative H5D data
➢ Compare performance of collective and independent I/O configurations

1.  https://github.com/LLNL/MACSio

Radar plots, or other methods, can be 
used to help visualize characteristics 

of HDF5 dataset accesses

Dataset access patterns could be 
used to help set/optimize chunking 
parameters to limit accesses to as 

few chunks as possible



New and upcoming Darshan features:
DAOS instrumentation



DAOS instrumentation

❖ Intel’s DAOS offers an exciting new storage 
paradigm for HPC apps, utilizing object-based 
storage interfaces over a combo of SCM and 
SSD devices
➢ libdfs: DAOS’s POSIX file system emulation API
➢ libdaos: DAOS’s native object (key-val) API

❖ Darshan will instrument libdaos and libdfs APIs 
to help provide insight into application and I/O 
middleware usage of DAOS
➢ Legacy POSIX app usage and performance 

characteristics
➢ Usage and performance characteristics of 

libdaos users (libdfs, HDF5 VOL, MPI-IO, etc.)

Work in progress

33

Figure courtesy of Intel



DAOS instrumentation

❖ libdfs instrumentation highlights:
➢ Operation counts:

■ open
■ read/write
■ punch
■ stat

➢ Total bytes read/written
➢ Access size histograms
➢ File chunk size
➢ DTX usage (strict consistency mode)
➢ Corresponding DAOS object record ID

■ Necessary to link Darshan’s DFS 
records with native DAOS records

➢ Read, write, and metadata timing

Work in progress

34

Note: Unsurprisingly, Darshan’s DFS 
instrumentation module closely follows 

the design of the POSIX module



DAOS instrumentation

❖ libdaos instrumentation highlights:
➢ Operation counts:

■ open
■ fetch (read) and update (write)
■ list (enumeration)
■ punch

➢ Total bytes read/written
➢ Access size histograms
➢ Object class parameters

■ layout (static or dynamic striping)
■ redundancy (replication, erasure coding)

➢ Container/pool UUIDs
➢ Read, write, and metadata timing

Work in progress

35

Note: Each DAOS object is multi-level 
key-val store, creating challenges for 

deciding what can be instrumented using a 
fixed set of Darshan counters -- we are still 
investigating what characteristics about key 

access patterns to capture

Figure courtesy of Intel



New and upcoming Darshan features:
pydarshan



pydarshan log file analysis

❖ Darshan has traditionally offered only the C-based darshan-util library and a 
handful of corresponding utilities to users
➢ Development of custom Darshan analysis utilities is cumbersome, requiring users to either:

■ Develop analysis tools in C using the low-level darshan-util library
■ Perform an inconvenient conversion from darshan-parser text output

❖ pydarshan has been developed* to simplify the interfacing of analysis tools 
with Darshan log data
➢ Use Python CFFI module to provide Python bindings to the native darshan-utils C API
➢ Expose Darshan log data as dictionaries, pandas dataframes, and numpy arrays

❖ We are hopeful pydarshan will lead to a richer ecosystem for Darshan log 
analysis utilities

Available in Darshan 3.3.0, coming soon!

37

* Thanks to Jakob Luettgau (DKRZ) for 
contributing the majority of the pydarshan 

code, examples, and documentation



❖ We’ve already found Jupyter notebooks to be an effective way of sharing pydarshan 
analysis examples (code, documentation, visualizations) with users, collaborators, etc.

38

pydarshan log file analysis
Available in Darshan 3.3.0, coming soon!

In just a few lines of code, users can read a Darshan log 
into memory and generate plots describing access patterns



❖ A beta version of pydarshan is currently available in PyPI and ready for users 
to experiment with

39

pydarshan log file analysis
Available in Darshan 3.3.0, coming soon!

➢ Use ‘pip install 
darshan’ to install the 
pydarshan module from 
PyPI on your system

➢ Alternatively, pydarshan 
can be installed alongside 
darshan-util, by providing 
‘--enable-pydarshan 
--enable-shared’ 
configure options



Other upcoming Darshan features

❖ In addition to those covered today, the following features are also on the 
Darshan roadmap:
➢ Autoperf instrumentation module (available in Darshan 3.3.0)

■ APMPI - MPI communication counters
■ CrayXC - compute and network counters for Cray XC systems
■ Thanks to Sudheer Chunduri (ALCF) for this contribution!

➢ PnetCDF instrumentation module (work in progress)
■ Full instrumentation of PnetCDF blocking/nonblocking APIs
■ Thanks to Claire Lee (NWU) and Wei-keng Liao (NWU) for this contribution!

➢ Fork handlers for non-MPI mode (work in progress, available in ‘dev-fork-safe’ branch)
■ Numerous updates to allow forked processes to generate their own Darshan logs

➢ Enhanced analysis tools and report generation (???)
■ Building off of our pydarshan log utility bindings, we want to revamp our analysis tools 

and report generation using Python

40



Broader system-wide analysis using Darshan:
Gauge



Gauge

❖ Allow system administrators and I/O 
experts to gain insights into classes 
of I/O workloads running on a 
computer

❖ HDBSCAN clustering used to 
organize Darshan logs into hierarchy 
of clusters that exhibit similar I/O 
characteristics

❖ Gauge users may select clusters to 
see more information on the clusters 
I/O characteristics
➢ User and application details
➢ Job features
➢ Access patterns

I/O clustering and analysis tool for Darshan logs

42

Special acknowledgement for the 
Gauge tool and the content of this slide 
goes to Mihailo Isakov, et al. (TAMU)  

Node height 
shows cluster 

density

Smaller, denser 
clusters

Larger, sparser 
clusters

Iskaov et al. “HPC I/O Throughput Bottleneck Analysis with 
Explainable Local Models”, SC’20

del Rosario et al. “Gauge: An Interactive Data-Driven Visualization 
Tool for HPC Application I/O Performance Analysis”, PDSW’20



Gauge

❖ Allow system administrators and I/O 
experts to gain insights into classes 
of I/O workloads running on a 
computer

❖ HDBSCAN clustering used to 
organize Darshan logs into hierarchy 
of clusters that exhibit similar I/O 
characteristics

❖ Gauge users may select clusters to 
see more information on the clusters 
I/O characteristics
➢ User and application details
➢ Job features
➢ Access patterns

I/O clustering and analysis tool for Darshan logs

43

Special acknowledgement for the 
Gauge tool and the content of this slide 
goes to Mihailo Isakov, et al. (TAMU)  

User and application details:
breakdown of users and 
applications

Percentage features: job 
features represented as a 
ratio in 0-100 %

Absolute features: job 
features that don’t have a 
known range

Breakdown of accesses by 
access size and read / write 
properties

Cluster name & options



Wrapping up

❖ We've covered a range of topics today demonstrating the role Darshan can play in 
developing a better understanding of HPC I/O behavior
➢ Runtime characterization of application usage of a number of different I/O libraries

■ Traditional I/O libraries like POSIX, MPI-IO, HDF5, as well as upcoming libraries such as 
DAOS

➢ I/O insights enabled via Darshan data, using existing utilities in the Darshan repo or using 3rd 
party tools like Gauge

■ pydarshan can greatly simplify the process of extending existing Darshan analysis tools 
or developing custom analysis tools

❖ Please reach out with any questions, comments, or feedback!

❖ Darshan website: https://www.mcs.anl.gov/research/projects/darshan/ 
❖ Darshan-users mailing list: darshan-users@lists.mcs.anl.gov 
❖ Source code, issue tracking: https://xgitlab.cels.anl.gov/darshan/darshan
❖ NERSC documentation: https://docs.nersc.gov/development/performance-debugging-tools/darshan 

44

https://www.mcs.anl.gov/research/projects/darshan/
mailto:darshan-users@lists.mcs.anl.gov
https://xgitlab.cels.anl.gov/darshan/darshan
https://docs.nersc.gov/development/performance-debugging-tools/darshan


45



46



Acknowledgement

This work was supported by the U.S. Department of Energy, Office of Science, Advanced Scientific Computing 
Research, under Contract DE-AC02-06CH11357. This research used resources of the Argonne Leadership Computing 
Facility at Argonne National Laboratory, which is supported by the Office of Science of the U.S. Department of Energy 
under contract DE-AC02-06CH11357. This research also used resources and data generated from resources of the 
National Energy Research Scientific Computing Center, a DOE Office of Science User Facility supported by the Office 
of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231.

47


